Developmental remodeling and shortening of the cardiac outflow tract involves myocyte programmed cell death.
نویسندگان
چکیده
The embryonic outflow tract is a simple tubular structure that connects the single primitive ventricle with the aortic sac and aortic arch arteries. This structure undergoes a complex sequence of morphogenetic processes to become the portion of the heart that aligns the right and left ventricles with the pulmonary artery and aorta. Abnormalities of the outflow tract are involved in many clinically significant congenital cardiac defects; however, the cellular and molecular processes governing the development of this important structure are incompletely understood. Histologic and tissue-tagging studies indicate that the outflow tract tissues compact and are incorporated predominantly into a region of the right ventricle. The hypothesis tested in the current study was that cell death or apoptosis in the muscular portion of the outflow tract is an important cellular mechanism for outflow tract shortening. The tubular outflow tract myocardium was specifically marked by infecting myocytes of the chicken embryo heart with a recombinant replication-defective adenovirus expressing beta-galactosidase (beta-gal) under the control of the cytomegalovirus promoter. Histochemical detection of the beta -gal-labeled outflow tract myocytes revealed that the tubular structure shortened to become a compact ring at the level of the pulmonic infundibulum over several days of development (stages 25-32, embryonic days 4-8). The appearance of apoptotic cardiomyocytes was correlated with OFT shortening by two histologic assays, TUNEL labeling of DNA fragments and AnnexinV binding. The rise and fall in the number of apoptotic myocytes detected by histologic analyses paralleled the change in activity levels of Caspase-3, a protease in the apoptotic cascade, measured in outflow tract homogenates. These results suggest that the elimination of myocytes by programmed cell death is one mechanism by which the outflow tract myocardium remodels to form the proper connection between the ventricular chambers and the appropriate arterial trunks.
منابع مشابه
Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation.
We have recently described a new subfamily of Fox genes, Foxp1/2/4, which are transcriptional repressors and are thought to regulate important aspects of development in several tissues, including the lung, brain, thymus and heart. Here, we show that Foxp1 is expressed in the myocardium as well as the endocardium of the developing heart. To further explore the role of Foxp1 in cardiac developmen...
متن کاملIncreased Hemodynamic Load in Early Embryonic Stages Alters Endocardial to Mesenchymal Transition
Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease. However, the progressive detrimental remodeling processes that relate altered blood flow to cardiac defects remain unclear. Endothelial-mesenchymal cell transition is one of the many co...
متن کاملAnalysis of Cripto expression during mouse cardiac myocyte differentiation.
Vertebrate cardiac progenitor cells are initially allocated in two distinct domains, the first and second heart fields. It has been demonstrated that first heart field cells give rise to the myocardial cells in the left ventricle and part of the atria, whereas second heart field cells move into the developing heart tube and contribute to the myocardium of the outflow tract and right ventricle a...
متن کاملApoptosis and Heart Failure: A Critical Review of the Literature Vascular Cell Apoptosis in Remodeling, Restenosis, and Plaque Rupture Endothelial Cell Apoptosis in Angiogenesis and Vessel Regression Apoptosis During Cardiovascular Development Myocyte Apoptosis in Ischemic Heart Disease
Morphogenesis and developmental remodeling of cardiovascular tissues involve coordinated regulation of cell proliferation and apoptosis. In the heart, clear evidence points toward focal apoptosis as a contributor to development of the embryonic outflow tract, cardiac valves, conducting system, and the developing coronary vasculature. Apoptosis in the heart is likely regulated by survival and de...
متن کاملProgrammed cell death-1 deficiency results in atrial remodeling in C57BL/6 mice.
Deficiency of the programmed cell death-1 (PD-1) gene enhances T-cell activation and increases inflammation levels. It has been reported that atrial fibrillation (AF) is closely related to inflammation. The aim of the present study was to investigate the role of PD-1 deficiency in the pathogenesis of AF. Two groups of mice were used in our experiment: the C57BL/6 and the C57BL/6-PD-(1-/-) group...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 125 19 شماره
صفحات -
تاریخ انتشار 1998